The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
随着计算能力的兴起,使用数据驱动的方法来共同设计机器人的形态和控制器已成为一种可行的方法。然而,评估每个形态下控制器的适应性是耗时的。作为开创性数据驱动的方法,共同适应利用了双NETWORK机制,目的是学习以形态学参数为条件的Q功能,以取代对各种候选者的传统评估,从而加快优化的速度。在本文中,我们发现共同适应在参数传输期间训练和状态行动分布变化期间的勘探误差的存在,这损害了性能。我们提出了在线和离线RL方法的并发网络的框架。通过灵活地利用行为克隆术语,我们可以减轻上述问题对结果的影响。进行仿真和物理实验以证明我们所提出的方法优于基线算法,这说明了所提出的方法是发现形态和控制器的最佳组合的有效方法。
translated by 谷歌翻译
本文的主要贡献是证明Omni方向绑扎机器人工作区的凸度(即,所有绑带长度可加入的机器人配置的集合)以及一组距离最佳的距离束缚的束缚的束缚路径计划算法该算法该算法该算法利用工作区凸度。该工作空间在拓扑上被证明是一个简单连接的子集,并且在几何上是所有配置集的凸子集。作为一个直接结果,两种配置之间的绑扎长度加入的最佳路径已被证明是通过通过串联的给定配置的串联串联指定的同置的无碰撞的本地最短路径,可以简单地通过表演来构建在2D环境中的无束缚路径缩短过程,而不是预定的工作空间中的路径搜索过程。凸度是束缚的机器人运动学的固有特性,因此对所有高级距离距离最佳的系绳路径计划任务产生了普遍影响:最耗时的工作空间预估算(WP)过程被替换为目标配置前的过程。计算过程(GCP)过程和同拷贝感知路径搜索过程被不受束缚的路径缩短过程取代。自然提出了由工作空间凸度的激励,有效解决以下问题的有效算法:(a)最佳的束缚重新配置(TR)计划问题是通过本地不受束缚的路径缩短(UPS)过程解决的,(b)经典的最佳绑扎路径(b) (TP)计划问题(从启动配置到未分配目标系绳状态的目标位置)通过GCP进程和$ N $ UPS流程解决,其中$ n $是绑带长度 - 加热配置的数量访问目标位置,(c)访问一系列多个目标位置的最佳束缚运动,称为
translated by 谷歌翻译
本文提出了一种有效的算法来解决$ k $最短的非副总体路径计划($ k $ -snpp)问题。通过加速对2D环境的同拷贝增强空间的效率低下的探索,我们的基本思想是尽早确定非最佳路径拓扑,并终止沿它们的路径。这是一种非平凡的做法,因为当局部最短路径尚未完全构造时,必须在路径计划过程的中间状态下完成。换句话说,要比较的路径尚未在目标位置上进行划分,这使得同义理论,对具有相同端点的路径之间的空间关系建模,而不是适用。本文是开发基于系统的基于距离的拓扑简化机制来解决$ k $ -SNPP任务的第一份工作,其核心贡献是在构造它们之前主张基于距离的本地最短路径的基于距离的顺序。如果可以预测该订单,则证明具有超过$ K $的那些路径拓扑被证明没有所需的$ K $路径,因此可以在路径计划过程中安全丢弃。为此,提出了一棵层次拓扑树作为该机制的实现,其节点被证明可以在非副主导方向和边缘(无碰撞路径段)中扩展,在局部最短。有了有效的标准,可以观察到将部分构造的本地最短路径之间的顺序关系赋予树,将不会扩展以非 - $ k $最佳拓扑扩展的树节点。结果,解决$ K $ -SNPP问题的计算时间减少了两个数量级。
translated by 谷歌翻译
近年来,视觉惯性进程(VIO)取得了许多重大进展。但是,VIO方法遭受了长期轨迹的定位漂移。在本文中,我们建议通过将超宽带(UWB)的范围测量纳入VIO框架\ TextIt {Conseply},提议首次估计Jacobian Visual惯性范围射程(FEJ-VIRO)来减少VIO的定位漂移。考虑到UWB锚的初始位置通常不可用,我们提出了一个长短的窗口结构,以初始化UWB锚位置以及状态增强的协方差。初始化后,FEJ-VIRO与机器人姿势同时估算了UWB锚定位置。我们进一步分析了视觉惯性范围估计器的可观察性,并证明了理想情况下存在\ textit {fortiT {fortiT {fortiT {四},而其中一个在实际情况下由于浪费信息而消失。基于这些分析,我们利用FEJ技术来执行不可观察的方向,从而减少估计器的不一致。最后,我们通过模拟和现实世界实验验证分析并评估所提出的FEJ-VIRO。
translated by 谷歌翻译
当前基于RGB的6D对象姿势估计方法在数据集和现实世界应用程序上取得了明显的性能。但是,从单个2D图像特征中预测6D姿势容易受到环境和纹理或相似物体表面的变化的干扰。因此,基于RGB的方法通常比基于RGBD的方法获得的竞争结果较低,后者既部署图像特征和3D结构特征。为了缩小这一性能差距,本文提出了一个6D对象姿势估计的框架,该框架从2个RGB图像中学习隐式3D信息。结合学习的3D信息和2D图像功能,我们在场景和对象模型之间建立了更稳定的对应关系。为了寻求从RGB输入中使用3D信息的最佳方法,我们对三种不同的方法进行了调查,包括早期融合,中融合和晚融合。我们确定中融合方法是恢复最精确的3D关键点的最佳方法,可用于对象姿势估计。该实验表明,我们的方法优于最先进的RGB方法,并通过基于RGBD的方法获得了可比的结果。
translated by 谷歌翻译
姿势注册在视觉和机器人技术中至关重要。本文重点介绍了无初始化姿势注册的挑战性任务,最高为7DOF,用于均质和异质测量。虽然最近基于学习的方法显示了使用可区分求解器的希望,但它们要么依赖于启发式定义的对应关系,要么易于局部最小值。我们提出了一个可区分的相关(DPC)求解器,该求解器是全球收敛性且无对应的。当与简单的特征提取网络结合使用时,我们的一般框架DPCN ++允许使用任意初始化的多功能姿势注册。具体而言,特征提取网络首先从一对均质/异质测量值中学习致密特征网格。然后将这些特征网格转换为基于傅立叶变换和球形径向聚集的翻译和比例不变频谱表示形式,将翻译转换和从旋转中脱钩。接下来,使用DPC求解器在频谱中独立有效地估计旋转,比例和翻译。整个管道都是可区分和训练的端到端。我们评估了DCPN ++在多种注册任务上,以不同的输入方式,包括2D Bird的视图图像,3D对象和场景测量以及医疗图像。实验结果表明,DCPN ++的表现优于经典和基于学习的基础线,尤其是在部分观察到的异质测量方面。
translated by 谷歌翻译
本文研究基于单眼图像的类别级对象构成估计。姿势感知的生成模型的最新进展为解决这一具有挑战性的任务使用分析铺平了道路。这个想法是依次更新生成模型的一组潜在变量,例如,姿势,形状和外观,直到生成的图像最能与观察结果一致为止。但是,收敛和效率是该推理程序的两个挑战。在本文中,我们从视觉导航的角度更深入地研究了分析的推断,并研究了该特定任务的良好导航策略。我们通过在收敛,鲁棒性和效率方面进行彻底比较,评估三种不同的策略,包括梯度下降,增强学习和模仿学习。此外,我们表明一种简单的混合方法会导致有效而有效的解决方案。我们进一步将这些策略与最先进的方法进行了比较,并在利用现成的姿势感知生成模型的合成和现实数据集上展示了卓越的性能。
translated by 谷歌翻译
单眼视觉惯性进程(VIO)是机器人和自主驾驶中的关键问题。传统方法基于过滤或优化解决了此问题。在完全可解释的同时,他们依靠手动干扰和经验参数调整。另一方面,基于学习的方法可以进行端到端的培训,但需要大量的培训数据来学习数百万个参数。但是,非解剖和重型模型阻碍了概括能力。在本文中,我们提出了一个完全可解释的,可解释的鸟眼视图(BEV),用于具有本地平面运动的机器人的VIO模型,可以在没有深神经网络的情况下进行训练。具体而言,我们首先采用无知的卡尔曼滤波器作为可区分的层来预测音高和滚动,其中学会了噪声的协方差矩阵以滤除IMU原始数据的噪声。其次,采用了精制的音高和滚动,以使用可区分的摄像头投影来检索每个帧的重力对齐的BEV图像。最后,利用可区分的姿势估计器来估计BEV框架之间的剩余3 DOF姿势:导致5 DOF姿势估计。我们的方法允许学习通过姿势估计损失监督的协方差矩阵,表现出优于经验基准的绩效。关于合成和现实世界数据集的实验结果表明,我们的简单方法与最先进的方法具有竞争力,并在看不见的场景上很好地概括了。
translated by 谷歌翻译
近年来,自动路滚轮作为一种流行的建筑机器人,吸引了行业和研究界的兴趣。然而,当涉及突破退变问题的隧道时,为机器人提供准确的定位结果,仍然是一个具有挑战性的问题。在本文中,我们的目的是通过基于优化来解决激光雷达和UWB测量来处理这个问题。在所提出的定位方法中,将受到限制的非变性的指示,将引入UWB重建的协方差以提高本地化的准确性。除此之外,还介绍了一种可以提取隧道内壁的特征以辅助定位的方法。为了评估所提出的方法的有效性,进行了真正的公路滚轮的三个实验,结果表明,我们的方法可以实现比现有方法更好的性能,并且可以应用于隧道内部工作的自动路滚轮。最后,我们讨论了在实际应用中部署系统的可行性,并提出了一些建议。
translated by 谷歌翻译